Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 202: 107978, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37660607

RESUMO

Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.


Assuntos
Secas , MicroRNAs , Produtos Agrícolas , Resistência à Seca , Agricultura , MicroRNAs/genética
2.
Plant Cell Rep ; 41(3): 519-533, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34057589

RESUMO

Drought stress-induced crop loss has been considerably increased in recent years because of global warming and changing rainfall pattern. Natural drought-tolerant plants entail the recruitment of a variety of metabolites and low molecular weight proteins to negate the detrimental effects of drought stress. Dehydrin (DHN) proteins are one such class of proteins that accumulate in plants during drought and associated stress conditions. These proteins are highly hydrophilic and perform multifaceted roles in the protection of plant cells during drought stress conditions. Evidence gathered over the years suggests that DHN proteins impart drought stress tolerance by enhancing the water retention capacity, elevating chlorophyll content, maintaining photosynthetic machinery, activating ROS detoxification, and promoting the accumulation of compatible solutes, among others. Overexpression studies have indicated that these proteins can be effectively targeted to mitigate the negative effects of drought stress and for the development of drought stress-tolerant crops to feed the ever-growing population in the near future. In this review, we describe the mechanism of DHNs mediated drought stress tolerance in plants and their interaction with several phytohormones to provide an in-depth understanding of DHNs function.


Assuntos
Secas , Estresse Fisiológico , Produtos Agrícolas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Biomolecules ; 10(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630474

RESUMO

Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants' growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants. The present review provides a comprehensive update on the prospects of ethylene signaling and its cross-talk with other phytohormones to regulate salinity stress tolerance in plants.


Assuntos
Etilenos/metabolismo , Plantas/metabolismo , Tolerância ao Sal , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...